Universal Electronic Water Level Controllers

- NEMA 4X enclosure
- Enclosure is $83 / 4^{\prime \prime} \mathrm{H} \times 101 / 2$ "W x 6 "D

Provide precise control that compensates for wave action and manages water levels to within $1 / 8$ " of operating range. Sensor rods will not plate foul or deteriorate, no matter the water quality. Digital circuitry easily integrates with existing building automation systems. Modular, quick-connect design. Control panel has water level and fault indicators and diagnostic self-test button. 15-yr. duty cycle. For cooling towers, water and stormwater holding and storage tanks, irrigation lakes, and sewage water systems. Each includes $20 " L \times 3 "$ dia. PVC pipe containing $1 / 4^{\prime \prime}$ stainless steel probes, $50-\mathrm{ft}$. sensor wire, mounting bracket, and U-bolts.

-t. sensor		Input Voltage			
		110V AC	60 Hz	220V AC 5	
Operating	Switch	Mfr.	Item	Mfr.	Item
Sensors Incl. Range	Type	Model	No.	Model	No.
Fill Height Only $11 / 2 \mathrm{in}$	SPST	WLC3000-120VAC	4GHK3	WLC3000-220VAC	4GHK8
Fill Height w/ High Level Alarm $11 / 2$ and 3 in	(2)SPST	WLC4000-120VAC	4GHK4	WLC4000-220VAC	4GHK9
Fill Height w/ Low Level Alarm $\quad 1 / 2$ and 6 in	(3)SPST	WLC4500-120VAC	4GHK5		
Fill Height w/High \& Low Level Alarm 11⁄2, 3, and 6 in	(3)SPST	WLC5000-120VAC	4GHK6	WLC5000-220VAC	4GHL1
Fill Height w/ High \& Low Level $1 ½, 3,6$, and 10 in	(4)SPST	WLC6000-120VAC	4GHK7	WLC6000-220VAC	4GHL2

Shell and Tube Heat Exchangers

Standard XChange ${ }^{\circ}$

BRASS

- Max. working pressure: shell side 300 psi ; tube side 150 psi
- Max. temp.: shell side $300^{\circ} \mathrm{F}$; tube side $300^{\circ} \mathrm{F}$

Max. BtuH

Water) to Max. BtuH (Oil

Water) Connection \begin{tabular}{lll}
240,000 \& 12,700 BtuH \& Shell 1 in NPT, Tube $3 / 4$ in NP

\hline 270,000 \& 28,000 BtuH \& Shell 1 in NPT, Tube $3 / 4$ in NP

\hline

230,000 \& 28,000 BtuH \& Shell 1 in NPT, Tube $3 / 4$ in NPT

\hline 33,000 \& 50

\hline

 $\begin{array}{llll}350,000 & 56,000 \text { BuH } & \text { Shell } 11 / 2 \text { iPT, Tube } / 4 \text { in NPT } & 4.8 \\ 525,000 & 42,700 \text { BtuH } & \text { Shell } 11 / 2 \text { in NPT, Tube } 1 \text { in NPT } & 7 .\end{array}$

525,000 \& 42,700 BtuH \& Shell $11 / 2$ in NPT, Tube 1 in NPT 7 in

$1,350,000$ \& 134,000 BtuH \& Shell 2 in NPT Tube $11 / 2$ in NPT

\hline 10375

$1,350,000$ \& 124,000 BtuH Shell 2 in NPT, Tube $1 / 2$ in NPT \& 8.375 in

\hline $1,600,000$ \& 239,000 BtuH Shell 2 in NPT, Tube $11 / 2$ in NPT \& 8.375 in \& 41

\hline

$1,600,000$ \& 239,000 BtuH Shell 2 in NPT, Tube $1 / 1 / 2$ in NPT

\hline $2,400,000$ \& 280,000 BtuH

\hline

\hline $2,750,000$ \& 400,000 But

\hline $3,100,000$ \& 516,000 BuH

\hline
\end{tabular} $3,100,000516,000$ BtuH Shell 3 in NPT, Tube 2 in NPT $3,450,000631,000$ BtuH Shell 3 in NPT, Tube 2 in NPT 11 in 66.625 in 10.5 in SN503008060005 5TNW2 SN516008060006 5TNX3 * Baser 649,000 BtuH Shell 3 in NPT, Tube 2 in NPT 11 in 78.625 in 10.5 in SN503008072005 5TNW3 $\operatorname{SN516008072006~5TNX4~}$ * Based on cooling $180^{\circ} \mathrm{F}$ water with $85^{\circ} \mathrm{F}$ cooling water and 10 psi pressure differential. ** Heat removed for max. flow (150 SSU oil @ $100^{\circ} \mathrm{F}$) exiting @ $120^{\circ} \mathrm{F}$ with cooling water @ $85^{\circ} \mathrm{F}$ and $10^{\circ} \mathrm{F}$ rise.

316 STAINLESS STEEL

- Max. working pressure: shell side 225 psi; tube side 150 psi
- Max. temp.: shell side $425^{\circ} \mathrm{F}$; tube side $425^{\circ} \mathrm{F}$

Brazed Plate Heat Exchangers

- Max. pressure: 435 psig design (6RGF1 to 6RGF6 are 390 psig design)
- Temp. range: -40° to $300^{\circ} \mathrm{F}$

Max. BtuH*	Max. Max. BtuH** (Oil BtuH \dagger (R22 to Water) to Water)		Connection	$\begin{gathered} \mathrm{w} \\ \text { (in.) } \end{gathered}$					316L STAINLESS STEEL, NICKEL BRAZE					
(Water to Water)			$\begin{gathered} \mathrm{H} \\ \text { (in.) } \end{gathered}$						(in.)	Mfr. Model	Item			
Oil														
135,000			12,725	-	1 in MNPT	4.37 in	12.2 in	1.37 in	BP410-10-LCA	2NXR4	12.2 in	1.64 in	BPN410-10 LCA	6RGD9
350,000	25,450	-		1 in MNPT	4.37 in	12.2 in	2.34 in	BP410-20-LCA	2NXR5	12.2 in	2.61 in	BPN410-20 LCA	6RGEO	
500,000	50,900	-		1 in MNPT	4.37 in	12.2 in	3.31 in	BP410-30-LCA	2NXR6	12.2 in	3.58 in	BPN410-30 LCA	6RGE1	
700,000	76,350	-	1 in MNPT	4.37 in	12.2 in	4.28 in	BP410-40-LCA	2NXR7	12.2 in	4.55 in	BPN410-40 LCA	6RGE2		
1,200,000	127,250	-	1 in MNPT	4.37 in	12.2 in	6.22 in	BP410-60-LCA	2NXR9	12.2 in	6.49 in	BPN410-60 LCA	6RGE4		
1,100,000	190,875		2 in MNPT	7.48 in	24.3 in	3.853 in	BP422-30-LCA	2NXT7	24.3 in	4.123 in	BPN422-30 LCA	6RGF1		
2,000,000	279,950	-	2 in MNPT	7.48 in	24.3 in	6.155 in	BP422-50-LCA	2NXT9	24.3 in	6.425 in	BPN422-50 LCA	6RGF3		
2,500,000	281,750	-	2 in MNPT	7.48 in	24.3 in	7.306 in	BP422-60-LCA	2NXU1	24.3 in	7.576 in	BPN422-60 LCA	6RGF4		
5,900,000	509,000	-	2 in MNPT	7.48 in	24.3 in	9.608 in	BP422-80-LCA	2NXU2	24.3 in	9.878 in	BPN422-80 LCA	6RGF5		
5,900,000	636,250	-	2 in MNPT	7.48 in	24.3 in	11.91 in	BP422-100-LCA	2NXU3	24.3 in	12.18 in	BPN422-100 LCA	6RGF6		
Oil, Double Wall														
85,835	32,000	-	1 in MNPT	4.37 in	12.2 in	2.65 in	BPDW410-20 LCA	6RGC2	-	-	-	-		
134,881	50,000	-	1 in MNPT	4.37 in	12.2 in	3.78 in	BPDW410-30 LCA	6RGC3	-	-	-	-		
139,610	35,000	-	1 in MNPT	4.37 in	20.7 in	1.37 in	BPDW415-10 LCA	6RGC6	-	-	-	-		
183,929	65,000	-	1 in MNPT	4.37 in	12.2 in	4.91 in	BPDW410-40 LCA	6RGC4	-	-	-			
282,024	98,000	-	1 in MNPT	4.37 in	12.2 in	7.16 in	BPDW410-60 LCA	6RGC5	-	-	-	-		
317,243	78,000	-	1 in MNPT	4.37 in	20.7 in	2.65 in	BPDW415-20 LCA	6RGC7	-	-	-	-		
492,134	123,000	-	1 in MNPT	4.37 in	20.7 in	3.78 in	BPDW415-30 LCA	6RGC8	-	-	-			
661,587	170,000	-	1 in MNPT	4.37 in	20.7 in	4.91 in	BPDW415-40 LCA	6RGC9	-	-	-	-		
831,000	210,000	-	1 in MNPT	4.37 in	20.7 in	6.04 in	BPDW415-50 LCA	6RGDO	-	-	-			
995,110	242,000	-	1 in MNPT	4.37 in	20.7 in	7.16 in	BPDW415-60 LCA	6RGD1	-	-	-			
1,225,875	320,000	-	1 in MNPT	4.37 in	20.7 in	9.42 in	BPDW415-80 LCA	6RGD2	-	-	-	-		
1,452,663	395,000	-	1 in MNPT	4.37 in	20.7 in	11.67 in	BPDW415-100 LCA	6RGD3	-	-	-	-		
1,566,533	450,000	-	1 in MNPT	4.37 in	20.7 in	13.92 in	BPDW415-120 LCA	6RGD4	-	-	-			
Refrigerant														
	-	6,000	1 in MNPT, $1 / 2$ in SW	4.37 in	12.2 in	1.37 in	BPR410-10-LCA	2NXU4	12.2 in	1.64 in	BPNR410-10 LCA	6RGF7		
-	-	12,000	1 in MNPT, $1 / 2$ in \& ${ }^{1 / 8}$ in SW	4.37 in	12.2 in	1.76 in	BPR410-14-LCA	2NXU5	12.2 in	2.028 in	BPNR410-14 LCA	6RGF8		
-	-	30,000	1 in MNPT, $1 / 2$ in \& 78 in SW	4.37 in	12.2 in	3.7 in	BPR410-34-LCA	2NXU6	12.2 in	3.968 in	BPNR410-34 LCA	6RGF9		
-	-	60,000	1 in MNPT, $7 / 8$ in SW	4.37 in	20.7 in	3.12 in	BPR415-28-LCA	2NXU7	20.7 in	3.386 in	BPNR415-28 LCA	6RGGO		
-	-	90,000	1 in MNPT, 78 in SW	4.37 in	20.7 in	4.47 in	BPR415-42-LCA	2NXU8	20.7 in	4.744 in	BPNR415-42 LCA	6RGG1		
-	-	120,000	1 in MNPT, $7 / 8$ in SW	4.37 in	20.7 in	6.67 in	BPR415-56-LCA	2NXU9	20.7 in	6.102 in	BPNR415-56 LCA	6RGG2		
	-	204,000	2 in MNPT, $13 / 8$ in \& $15 / 8$ in SW	7.48 in	24.3 in	6.155 in	BPR422-50-LCA	2NXV1	24.3 in	6.425 in	BPNR422-50 LCA	6RGG3		
Water														
45,000	-	-	1 in MNPT	4.37 in	12.2 in	2.34 in	BP411-20-LCA	2NXT1						
60,000	-	-	3/4 in MNPT	3.18 in	8.2 in	1.21 in	BP400-10-LCA	2NXP9	8.45 in	1.45 in	BPN400-10 LCA	6RGD5		
150,000	-	-	$3 / 4$ in MNPT	3.18 in	8.2 in	2.02 in	BP400-20-LCA	2NXR1	8.45 in	2.23 in	BPN400-20 LCA	6RGD6		
225,000	-	-	$3 / 4$ in MNPT	3.18 in	8.2 in	2.83 in	BP400-30-LCA	2NXR2	8.45 in	3.01 in	BPN400-30 LCA	6RGD7		
350,000	-	-	$3 / 4$ in MNPT	3.18 in	8.2 in	3.64 in	BP400-40-LCA	2NXR3	8.45 in	3.79 in	BPN400-40 LCA	6RGD8		
70,000	-	-	1 in MNPT	4.37 in	12.2 in	3.31 in	BP411-30-LCA	2NXT2	12.2 in	3.58 in	BPN411-30 LCA	6RGE6		
180,000	-	-	1 in MNPT	4.37 in	12.2 in	2.34 in	BP412-20-LCA	2NXT3	12.2 in	2.61 in	BPN412-20 LCA	6RGE7		
295,000			1 in MNPT	4.37 in	12.2 in	3.31 in	BP412-30-LCA	2NXT4	12.2 in	3.58 in	BPN412-30 LCA	6RGE8		
350,000	-	-	1 in MNPT	4.37 in					12.2 in	2.61 in	BPN411-20 LCA	6RGE5		
415,000	-	-	1 in MNPT	4.37 in	12.2 in	4.28 in	BP412-40-LCA	2NXT5	12.2 in	4.55 in	BPN412-40 LCA	6RGE9		
535,000		-	1 in MNPT	4.37 in	12.2 in	5.25 in	BP412-50-LCA	2NXT6	12.2 in	5.52 in	BPN412-50 LCA	6RGFO		
900,000	-	-	1 in MNPT	4.37 in	12.2 in	5.25 in	BP410-50-LCA	2NXR8	12.2 in	5.52 in	BPN410-50 LCA	6RGE3		
1,500,000	-	-	2 in MNPT	7.48 in	24.3 in	5.004 in	BP422-40-LCA	2NXT8	24.3 in	5.274 in	BPN422-40 LCA	6RGF2		

${ }^{*} 180^{\circ} \mathrm{F}$ boiler water inlet, $130^{\circ} \mathrm{F}$ outlet, $50^{\circ} \mathrm{F}$ domestic water inlet, $140^{\circ} \mathrm{F}$ outlet. ${ }^{* *}$ ISO VG_ 46 oil cooled to $125^{\circ} \mathrm{F}$ using a $2: 1$ oil-to-water flow rate and $85^{\circ} \mathrm{F}$ water. \dagger Cool 2.4 gpm per ton of water from 54° to $44^{\circ} \mathrm{F}$ using R22 at 35° and $8^{\circ} \mathrm{F}$ superheat.

