

- High-speed steel
- Bright (uncoated) finish

Taper pin reamers enlarge, finish, or shape holes for a precise fit when installing taper pins into the hole. They have a $1 / 4^{\prime \prime}$ taper to the foot and are made from high-speed steel, which offers good wear resistance in general purpose metalworking applications.
Helical—Reduce the size of the chips created during reaming and prevent chips from packing in the flutes. Operated with a machine

Spiral—Pull chips out of the hole during reaming, which helps prevent damage to the reamers and workpiece. Suitable for reaming applications with blind holes and interrupted cuts. Operated with a machine such as a drill press, lathe, or screw machine.

Straight—Push chips forward into the hole and are the most commonly used style of reamer. Operated with a tap wrench, adjustable wrench, or vise. such as a drill press, lathe, or screw machine.
For Small

For Pin Size	Small End Dia.	Large End Dia.	Shank Dia.	Flute Length	Overall Length	$\begin{gathered} \text { HELICAL FLUTE } \\ \text { Item } \\ \text { Brand No. } \end{gathered}$	STRAIGH Brand	T FLUTE Item No.	SPIRAL Brand	FLUTE Item No.
Left Hand Spiral										
\#0	1/8 in	$5 / 32$ in	11/64 in	$1^{11 / 16}$ in	$2{ }^{15} / 16$ in	- -	-	-	Yankee	20D595
\#1	9/64 in	11/64 in	3/16 in	$1^{11 / 16}$ in	$2^{15 / 16}$ in	Yankee 20D575	-	-		
\#2	$5 / 32$ in	3/16 in	13/64 in	1 15/16 in	$3^{15 / 16}$ in	Yankee 20D576	-	-	Yankee	20D597
\#2/0	$1 / 8$ in	$9 / 64$ in	$5 / 32$ in	$15 / 8$ in	$25 / 8$ in	- -	-	-	Yankee	20D611
\#2/0	7/64 in	9/64 in	$5 / 32$ in	$15 / 8$ in	$25 / 8$ in	Yankee 20D589	-	-	-	-
\#3	3/16 in	$7 / 32$ in	15/64 in	$25 / 16$ in	$3^{11 / 16}$ in		-	-	Yankee	20D598
\#3	11/64 in	7/32 in	15/64 in	$25 / 16$ in	$3^{11 / 16}$ in	Yankee 20D577	-	-		
\#3/0	$1 / 8$ in	$1 / 8$ in	9/64 in	$15 / 16$ in	$25 / 16$ in		-	-	Yankee	$20 \mathrm{D612}$
\#3/0	$3 / 32$ in	$1 / 8$ in	$9 / 64$ in	$15 / 16$ in	$25 / 16$ in	Yankee 20D590	-	-	-	
\#4	$3 / 16$ in	1/4 in	17/64 in	$29 / 16$ in	$45 / 8$ in		-	-	Yankee	20D599
\#4	13/64 in	1/4 in	17/64 in	$29 / 16$ in	$45 / 8$ in	Yankee 20D578	-	-		
\#4/0	1/16 in	7/64 in	$1 / 8$ in	$15 / 16$ in	$25 / 16$ in	- -	-	-	Yankee	$20 \mathrm{D613}$
\#5	1/4 in	19/64 in	5/16 in	$2^{13 / 16}$ in	$45 / 16$ in	- -	-	-	Yankee	20D601
\#5	15/64 in	19/64 in	$5 / 16$ in	$2^{13 / 16}$ in	$45 / 16$ in	Yankee 20D579	-	-		
\#6	1/4 in	$11 / 32$ in	23/64 in	$35 / 8$ in	$57 / 16$ in	- -	-	-	Yankee	$20 \mathrm{D602}$
\#6	17/64 in	11/32 in	23/64 in	$35 / 8$ in	$57 / 16$ in	Yankee 20D580	-	-	-	
\#6/0	1/16 in	5/64 in	$3 / 32$ in	15/16 in	155/16 in	- -	-	-	Yankee	$20 \mathrm{D615}$
\#7	5/16 in	27/64 in	$13 / 32$ in	47/16 in	$65 / 16$ in	- -	-	-	Yankee	20D603
\#7	21/64 in	27/64 in	$13 / 32$ in	$47 / 16$ in	$65 / 16$ in	Yankee 20D581	-	-	-	
\#8	$3 / 8$ in	$1 / 2$ in	$7 / 16$ in	$53 / 16$ in	$73 / 16$ in	- -	-	-	Yankee	20D604
\#8	25/64 in	$1 / 2$ in	$7 / 16$ in	$53 / 16$ in	$73 / 16$ in	Yankee 20D582	-	-		
\#9	1/4 in	41/64 in	$9 / 16$ in	$65 / 8$ in	8 5/16 in	- -	-	-	Yankee	$20 \mathrm{D605}$
\#9	15/32 in	41/64 in	$9 / 16$ in	$65 / 8$ in	$85 / 16$ in	Yankee 20D583	-	-		
\#10	9/16 in	23/32 in	$5 / 8$ in	$6^{13 / 16}$ in	$95 / 16$ in	- -	-	-	Yankee	$20 \mathrm{D606}$
\#11	11/16 in	7/8 in	$3 / 4$ in	$81 / 4 \mathrm{in}$	$111 / 4$ in	- -	-	-	Yankee	20 D 607
\#13	1 in	$11 / 4$ in	$11 / 16$ in	12 in	16 in	- -	-	-	Yankee	20D609
Right Hand Spiral										
\#0	1/8 in	$5 / 32$ in	11/64 in	$1^{11 / 16}$ in	$2^{15 / 16}$ in	- -	Yankee	20D553		
\#1	$1 / 8$ in	11/64 in	$3 / 16$ in	$1^{11 / 16}$ in	$2^{15 / 16}$ in	- -	-	-	Cleveland 445N25	
\#1	9/64 in	11/64 in	$3 / 16$ in	$1^{11 / 16}$ in	$2^{15 / 16}$ in	- -	Yankee	20D554	-	
\#2	3/16 in	3/16 in	13/64 in	1 15/16 in	$3^{3 / 16}$ in	-	-	-	Cleveland 445N26	
\#2	$5 / 32$ in	$3 / 16$ in	13/64 in	$1^{15 / 16}$ in	$33 / 16$ in	Cleveland 445M93	-	-	-	
\#2	5/32 in	$3 / 16$ in	13/64 in	$1^{15 / 16}$ in	$3^{15 / 16}$ in	- -	Yankee	20D555	-	-
\#2/0	7/64 in	9/64 in	$5 / 32$ in	$15 / 8$ in	$25 / 8$ in	- -	Yankee	20D568	-	
\#3	$3 / 16$ in	$7 / 32$ in	15/64 in	$25 / 16$ in	$3^{11 / 16}$ in	- -	-	-	Cleveland 445N27	
\#3	$3 / 32$ in	$1 / 8$ in	$9 / 64$ in	$15 / 16$ in	$25 / 16$ in	- -	Cleveland	445N06	-	
\#3	11/64 in	$7 / 32$ in	15/64 in	$25 / 16$ in	$3^{11 / 16}$ in	- -	Cleveland	445N11	-	
\#3	11/64 in	$7 / 32$ in	15/64 in	$25 / 16$ in	$3^{11 / 16}$ in	Cleveland 445M94	Yankee	20D556	-	-
\#3/0	$3 / 32$ in	$1 / 8$ in	9/64 in	$15 / 16$ in	$25 / 16$ in	- -	Yankee	20D569	-	-
\#4	3/16 in	$1 / 4$ in	1764 in	29/16 in	$41 / 16$ in	- -	-	-	Cleveland 445N28	
\#4	13/64 in	$1 / 4$ in	17/64 in	$29 / 16$ in	$45 / 8$ in		Yankee	20 D 557		
\#4	13/64 in	1/4 in	1764 in	29/16 in	$41 / 16$ in	Cleveland 445M95	Cleveland	445N12	-	-
\#4/0	5/64 in	7/64 in	$1 / 8$ in	$15 / 16$ in	$25 / 16$ in	Cleveland 445M88	-	-	-	-
\#5	$1 / 4$ in	19/64 in	$5 / 16$ in	$2^{13 / 16}$ in	$45 / 16$ in	- -	-	-	Cleveland 445N29	
\#5	15/64 in	19/64 in	$5 / 16$ in	$2^{13 / 16}$ in	$45 / 16$ in	Cleveland 445M96	Yankee	20D558		
\#5	15/64 in	19/64 in	$5 / 16$ in	$2^{13 / 16}$ in	$45 / 16$ in	- -	Cleveland	445N13	-	-
\#5/0	1/16 in	$3 / 32$ in	7/64 in	$13 / 16$ in	$2^{3 / 16}$ in	Cleveland 445M87	Yankee	20D571	-	-
\#6	$1 / 4$ in	11/32 in	23/64 in	$3^{11 / 16}$ in	$57 / 16$ in				Cleveland 445N30	
\#6	17/64 in	11/32 in	23/64 in	$3^{11 / 16}$ in	$57 / 16$ in	Cleveland 445M97	Cleveland	445N14	-	
\#6	17/64 in	11/32 in	23/64 in	$35 / 8$ in	$57 / 16$ in	- -	Yankee	20D559	-	-
\#6/0	3/64 in	5/64 in	$3 / 32$ in	15/16 in	$1^{15 / 16}$ in	- -	Yankee	20D572	-	-
\#7	5/16 in	27/64 in	$13 / 32$ in	$47 / 16$ in	$65 / 16$ in	- -			Cleveland 445N31	
\#7	21/64 in	27/64 in	${ }^{13 / 32}$ in	$47 / 16$ in	$65 / 16$ in	- -	Cleveland	445N15	-	-
\#7	21/64 in	27/64 in	$13 / 32$ in	$47 / 16$ in	$65 / 16$ in	Cleveland 445M98	Yankee	20D560	-	-
\#7/0	$3 / 64$ in	$1 / 16$ in	$5 / 64$ in	13/16 in	$1^{13 / 16}$ in	Cleveland 445M85	Yankee	20D573	Cleveland 445N32	
\#8	$3 / 8$ in	$1 / 2$ in	$7 / 16$ in	$53 / 16$ in	$73 / 16$ in	- -				
\#8	25/64 in	$1 / 2$ in	7/16 in	$53 / 16$ in	$73 / 16$ in	- -	Cleveland	445N16	-	-
\#8	25/64 in	$1 / 2$ in	$7 / 16$ in	$53 / 16$ in	$73 / 16$ in	Cleveland 445M99	Yankee	20D561	-	-
\#9	$1 / 4$ in	$41 / 64$ in	$9 / 16$ in	$61 / 16$ in	$85 / 16$ in	Cleveland 445N01			Cleveland 445N33	
\#9	15/32 in	$41 / 64$ in	$9 / 16$ in	$61 / 16$ in	8 5/16 in		Cleveland	445N17	-	-
\#9	15/32 in	$41 / 64$ in	$9 / 16$ in	$65 / 8$ in	$85 / 16$ in	- -	Yankee	20D562	-	
\#10	9/16 in	23/32 in	$5 / 8$ in	$6^{13 / 16}$ in	$95 / 16$ in	Cleveland 445 N 02	-	-	Cleveland 445N34	
\#10	37/64 in	$23 / 32$ in	$5 / 8$ in	$6^{13 / 16}$ in	$95 / 16$ in		Yankee	20D563	-	-
\#10	37/64 in	23/32 in	$5 / 8$ in	$6^{13 / 16}$ in	$95 / 16$ in	- -	Cleveland	445N18	-	-
\#11	45/64 in	7/8 in	$3 / 4$ in	$81 / 4$ in	$11^{1 / 4}$ in	- -	Yankee	20D564	-	-
\#12	53/64 in	$13 / 64$ in	$3 / 4$ in	10 in	$13^{7 / 8}$ in	- -	Yankee	20D565	-	-
2 in	9/16 in	47/64 in	$5 / 8$ in	$31 / 2$ in	6 in	- -	Yankee	20D537	-	-
3 in	49/64 in	$63 / 64$ in	$7 / 8$ in	$41 / 4$ in	$71 / 4 \mathrm{in}$	- -	Yankee	20D538	-	-

High-Speed Steel Bridge Reamers

Bridge reamers install into compatible power tools to enlarge, debur, and finish holes in structural materials to a specific size. They have tapered flutes that ease their entry into rough-cut or misaligned holes. Designed for reaming difficult-to-machine materials such as iron and structural steel in applications where extreme precision is not required. Also commonly used to ream rivet holes in parts for automobile, bridges, rail cars, ships, and pressure vessels.

HEX NUT SHANK

Hex nut keeps the reamer securely in place in tools that have a square drive. Typically used to ensure the reamer won't come loose when it's used in a power tool that is being operated at a high location. Hex nut shank with safety magnet also have a magnet on the shank and provide a stronger hold than reamers that are secured with only a hex nut.

MORSE TAPER SHANK

Can be directly inserted into the spindle of a compatible tool or into an adapter such as a Morse taper sleeve or socket. This maximizes efficiency when installing and removing the reamers. These reamers provide accurate centering, and their self-locking taper shank is held in place by the friction between the shank and the toolholder.
STRAIGHT SHANK
Straight shank reamers with safety collars prevent the reamer from going too deep into the workpiece. Straight shank reamers with three
flats are used in pneumatic or electric power tools.
$\begin{array}{ccc}\text { Flute } & \text { Overall Shank } & \text { Item } \\ \text { Size - Decimal Length Length } & \text { Dia. } & \text { No. }\end{array}$ Hex Nut Shank, Black Oxide
$9 / 16$ in $-0.5625 \quad 51 / 8$ in $67 / 8$ in $1^{1 / 16}$ in 13 H 855 11/16 in $-0.6875 \quad 4^{1 / 2}$ in $63 / 8$ in $1^{1 / 166}$ in $13 H 8556$ $\frac{11 / 16 \text { in }-0.6875 \quad 71 / 8 \text { in } \quad 91 / 4 \text { in } 11 / 16 \text { in } 13 H 857}{}$ $13 / 16$ in $-0.8125 \quad 5$ in 7 in $\quad 11 / 4$ in 13 H 858

 15/16 in $-0.9375 \quad 5$ in 7 in $17 / 16$ in 13H860 $\frac{15 / 16 \text { in }-0.9375 \quad 73 / 8 \text { in } 93 / 8 \text { in } 17 / 16 \text { in } 13 H 861}{116}$ $11 / 66$ in $-1.062573 / 8$ in $93 / 8$ in $15 / 8$ in 13H863 Hex Nut Shank with Safety Magnet, Black Oxide $5 / 8$ in $-0.625 \quad 4^{1 / 2}$ in $\quad 6$ in $1^{1 / 166}$ in 12G353 \begin{tabular}{ll}
$11 / 16$ in -0.6875 \& $41 / 2$ in $\quad 63 / 8$ in $11 / 16$ in 12G354

\hline

$11 / 16$ in -0.6875 \& $41 / 2$ in \& 68 in \& $11 / 1 /$ in 12G335

$3 / 4$ in -0.75 \& 5 in \& 7 in \& $11 / 4$

\hline

$3 / 4$ in -0.75 \& 5 in \& 7 in \& $11 / 4$ in 12G355

\hline $13 / 16$ in -0.8125 \& 5 in \& 7 in \& $11 / 4$ in 12G356
\end{tabular} $7 / 8$ in $-0.875 \quad 5$ in $\quad 7$ in $\quad 17 / 16$ in 12 G 357 15/16 in -0.9375 5 in $\quad 7$ in $\quad 17 / 16$ in 12G358 1 in-1.0000 5 in $\quad 7$ in $17 / 16$ in 12G359 $11 / 16$ in $-1.0625 \quad 5$ in $\quad 7$ in $15 / 8$ in 12G360 $11 / 8$ in $-1.125 \quad 5$ in $\quad 7$ in $\quad 15 / 8$ in 12G361 $11 / 4$ in-1.25 $\quad 5$ in $\quad 7$ in $1^{13 / 16}$ in 12G363 Morse Taper Shank, Black Oxide

$3 / 8$ in $0.375 \quad 2^{3 / 4}$ in $5^{11 / 16}$ in MT1 $\quad 13 \mathrm{H} 785$ | $1 / 2$ in -0.5 | $51 / 8$ in 9 in MT2 | $13 H 788$ |
| :--- | :--- | :--- | :--- | :--- | $5 / 8$ in-0.625 $4 \frac{1}{1 / 2}$ in $81 / 16$ in MT2 13 H791 13/16 in -0.8125 5in $91 / 2$ in MT3 $\quad 13$ H797 $11 / 16$ in $-1.0625 \quad 5$ in $91 / 2$ in MT3 $\quad 13 \mathrm{H} 806$ $11 / 8$ in $-1.125 \quad 5$ in $91 / 2$ in \quad MT3 $\quad 13 \mathrm{H} 808$ $11 / 16$ in $-1.062573 / 8$ in 12 in MT3 $13 H 807$ $11 / 8$ in $-1.12573 / 8$ in 12 in MT3 13 H 809 $13 / 8$ in $-1.375 \quad 73 /$ in $\quad 13$ in MT4 13 H812 $\begin{array}{llll}11 / 2 \text { in }-1.5 & 73 / 8 \text { in } & 13 \text { in } & \text { MT4 } \\ \text { Straight with Safety } & 13 H 813\end{array}$ $3 / 16$ in $-0.187513 / 8$ in $31 / 2$ in $1 / 4$ in 13 H 830 | $9 / 32$ in -0.2812 | $17 / 8$ in | 4 in | $1 / 4$ | in |
| :--- | :--- | :--- | :--- | :--- |
| $13 H 833$ | | | | | $\begin{array}{ccccc}9 / 32 \text { in }-0.2812 & 17 / 8 \text { in } & 4 \text { in } & 1 / 4 / 4 & 13 H 833 \\ 3 / 8 \text { in }-0.375 & 27 / 8 \text { in } & 5 \text { in } & 3 / 8 \text { in } & 13 H 836\end{array}$ | $3 / 8$ in -0.375 | $21 / 8$ in | 5 in | $3 / 8$ in | $13 H 8336$ |
| :---: | :---: | :---: | :---: | :---: |
| $7 / 16$ in -0.4375 | $31 / 8$ in | $51 / 4$ in | $7 / 16$ in | $13 H 837$ | $1 / 2$ in $-0.5 \quad 3^{13 / 16}$ in $5^{15 / 16}$ in $\quad 1 / 2$ in $\quad 13$ H838 $9 / 16$ in-0.5625 $41 / 8$ in $61 / 4$ in $\quad 1 / 2$ in $\quad 13$ H839 $5 / 8$ in $-0.625 \quad 47 / 16$ in $69 / 16$ in $1 / 2$ in $\quad 13 H 840$ 11/16 in-0.6875 $47 / 8$ in $\quad 7$ in $\quad 1 / 2$ in $\quad 13 \mathrm{H} 841$ $3 / 4$ in $-0.75 \quad 47 / 8$ in $\quad 7$ in $\quad 1 / 2$ in $\quad 13 \mathrm{H} 842$ $\begin{array}{lllll}13 / 16 \text { in }-0.8125 & 51 / 8 \text { in } & 71 / 4 \text { in } & 1 / 2 \text { in } & 13 H 843 \\ 763 \text { in } & \end{array}$ $\begin{array}{ccccc}1 / 8 \text { in }-0.875 & 51 / 8 \text { in } & 71 / 4 & \text { in } & 1 / 2 \text { in } \\ 13 H 844 \\ 15 / 16 \text { in }-0.9375 & 5{ }^{1 / 8} \text { in } & 71 / 4 \text { in } & 1 / 2 \text { in } & 13 H 845\end{array}$ | $15 / 16$ in -0.9375 | $51 / 8$ in | $71 / 4$ in | $1 / 2$ in | $13 H 845$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 in -1.0000 | $51 / 8$ in | $71 / 4$ in | $1 / 2$ in | $13 H 846$ | | $11 / 16$ in -1.0625 | $51 / 8$ in | $71 / 4$ in | $1 / 2 / 2$ in | $13 H 847$ |
| :--- | :--- | :--- | :--- | :--- | | $11 / 8$ in -1.125 | $51 / 8$ in | $71 / 4$ in | $1 / 2$ in | $13 H 848$ |
| :--- | :--- | :--- | :--- | :--- |
| $13 / 4$ in | | | | | $13 / 16$ in $-1.187551 / 8$ in $71 / 4$ in $\quad 1 / 2$ in $\quad 13$ H849 $11 / 4$ in-1.25 $53 / 8$ in $71 / 2$ in $\quad 1 / 2$ in 13 H 850 $15 / 16$ in $-1.312553 / 8$ in $71 / 2$ in $\quad 1 / 2$ in 13 H851 $13 / 8$ in $-1.375 \quad 53 / 8$ in $71 / 2$ in $\quad 1 / 2$ in $\quad 13 \mathrm{H} 852$ $11 / 2$ in $-1.5 \quad 53 / 8$ in $71 / 2$ in $\quad 1 / 2$ in

Straight with Three Flats, Black Oxide $3 / 8$ in-0.375 $\quad 21 / 2$ in $45 / 8$ in $3 / 8$ in $\quad \mathbf{1 3 H 8 1 6}$ $7 / 16$ in $-0.4375 \quad 31 / 4$ in $53 / 8$ in $\quad 7 / 16$ in $\quad 13 H 817$ $\begin{array}{lllll}1 / 2 \text { in }-0.5 & 33 / 4 & \text { in } & 57 / 8 \text { in } & 1 / 2 \text { in } \quad 13 H 818\end{array}$ $9 / 16$ in $-0.5625 \quad 33 / 4$ in $57 / 8$ in $\quad 1 / 2$ in $\quad 13 H 819$ | $5 / 8$ in -0.625 | $41 / 4$ in | $63 / 8$ in | $1 / 2$ in | $13 H 820$ |
| :---: | :---: | :---: | :---: | :---: |
| $21 / 32$ in -0.6562 | $41 / 4$ in | $63 / 8$ in | $1 / 2$ in | $13 H 821$ |

 $3 / 4$ in-0.75 $\quad 41 / 2$ in $67 / 8$ in $\quad 1 / 2$ in $13 H 823$ \begin{tabular}{llll}
$13 / 16$ in-0.8125 \& $41 / 2$ in $67 / 8$ in \& $1 / 2$ in \& $13 H 825$

\hline

 $7 / 8$ in-0.875 $41 / 2$ in $67 / 8$ in $\quad 1 / 2$ in $13 H 826$ 15/16 in - $0.9375 \quad 41 / 2$ in $67 / 8$ in $\quad 1 / 2$ in 13 H827

\hline 1 in -1.0000 \& $41 / 2$ in \& $67 / 8$ in \& $1 / 2$ in \& 13 H 828

\hline $11 / 16$ in -1.0625 \& $4^{1 / 2}$ in \& $67 / 8$ in \& $1 / 2$ in \& 13 H 829

\hline
\end{tabular}

