Jig Bore Style, Right Hand, Single End 33UN59

Bell Tip, Right Hand, Double End 33UM96

Center Drills

Center drills consist of a pilot drill and a countersink and High-Speed Steel—Provides good wear resisare used to create holes at the center of a piece of stock so it can be turned between centers on a lathe in metalworking tasks. Drills with a plain tip are the standard choice for creating center holes. Drills with a radius tip have a tapered flute that allows them to create more accurate holes than other styles of center drills. Drills with a bell tip have a 120° chamfer on their tip that bevels the outer edge of the center hole to strengthen it and protect it from damage in applications where the piece of stock will go through multiple machining passes. Jig-bore drills have a flat on the shank for securing them to a jig borer machine with a set screw.

DrillSize	Countersink Body		Drill Point Dia.	Overall Length	Bright(Uncoated)ItemNo.	TiN Item No.
	Angle	Dia.				
Radius Tip, Right Hand, Double End						
High-Speed Steel						
\#2	60°	$3 / 16$ in	5/64 in	$17 / 8$ in	33UM22	-
\#3	60°	1/4 in	7/64 in	2 in	33UL56	
Plain Tip, Right Hand, Double End						
Carbide						
\#0	60°	1/8 in	1/32 in	$11 / 2$ in	1DBJ5	-
\#1	60°	$1 / 8$ in	3/64 in	$11 / 2$ in	1DBJ6	-
\#2	60°	$3 / 16$ in	$5 / 64$ in	2 in	1DBJ7	
\#3	60°	$1 / 4$ in	7/64 in	2 in	1DBJ8	
\#4	60°	$5 / 16$ in	$1 / 8$ in	$21 / 8$ in	1DBJ9	
\#4-0	60°	$1 / 8$ in	0.0150 in	$11 / 2$ in	33UN80	
\#5	60°	7/16 in	$3 / 16$ in	$23 / 4$ in	1DBK1	
\#6	60°	$1 / 2$ in	7/32 in	3 in	1DBK2	
\#7	60°	$5 / 8$ in	$1 / 4$ in	$33 / 4$ in	1DBK3	
\#8	82°	$3 / 4$ in	$5 / 16$ in	4 in	33UP11	
Cobalt						
\#0	60°	1/8 in	$1 / 32$ in	$11 / 4$ in	1DBF7	
\#1	60°	$1 / 8$ in	3/64 in	$11 / 4$ in	1DBF8	
\#2	60°	$3 / 16$ in	5/64 in	$17 / 8$ in	1DBF9	
\#2-0	60°	$1 / 8$ in	0.0250 in	$11 / 4$ in	1DBF6	-
\#3	60°	$1 / 4$ in	7/64 in	2 in	1DBG1	
\#4	60°	$5 / 16$ in	$1 / 8$ in	$21 / 8$ in	1DBG2	
\#4-1/2	60°	$3 / 8$ in	9/64 in	$21 / 2$ in	33UN75	
\#5	60°	7/16 in	$3 / 16$ in	$23 / 4$ in	1DBG3	-
\#6	60°	$1 / 2$ in	7/32 in	3 in	1DBG4	
\#7	60°	$5 / 8$ in	$1 / 4$ in	$31 / 4$ in	1DBG5	
\#10	60°	1 in	$3 / 8$ in	$33 / 4$ in	1DBG8	
High-Speed Steel						
\#0	60°	$1 / 8$ in	$1 / 32$ in	$11 / 4$ in	3P277	1DBE4
\#0	82°	1/8 in	$1 / 32$ in	$11 / 4$ in	2RTW2	-
\#0	90°	$1 / 8$ in	$1 / 32$ in	$11 / 4$ in	1DBH1	-
\#1	60°	$1 / 8$ in	3/64 in	$11 / 4$ in	3P279	1DBE5
\#1	60°	$1 / 8$ in	3/64 in	3 in	1DBK5	-
\#1	60°	$1 / 8$ in	$3 / 64$ in	4 in	1DBK6	-
\#1	60°	$1 / 8$ in	$3 / 64$ in	5 in	1DBK7	-
\#1	60°	$1 / 8$ in	3/64 in	6 in	1DBK8	-
\#1	82°	$1 / 8$ in	3/64 in	$11 / 4$ in	2RTW3	-
\#1	90°	$1 / 8$ in	$3 / 64$ in	$11 / 4$ in	1DBH2	2RTX7
\#2	60°	$3 / 16$ in	$5 / 64$ in	$17 / 8$ in	3P281	1DBE6
\#2	60°	$3 / 16$ in	$5 / 64$ in	3 in	1DBK9	-
\#2	60°	$3 / 16$ in	$5 / 64$ in	4 in	1DBL1	-
\#2	60°	$3 / 16$ in	$5 / 64$ in	5 in	1DBL2	-
\#2	60°	$3 / 16$ in	$5 / 64$ in	6 in	1DBL3	-
\#2	82°	$3 / 16$ in	5/64 in	$17 / 8$ in	2RTW4	4FVX3
\#2	90°	$3 / 16$ in	5/64 in	$17 / 8$ in	1DBH3	2RTX8
\#2-0	60°	$1 / 8$ in	0.0200 in	$11 / 4$ in	3P275	-
\#2-0	60°	$1 / 8$ in	0.0250 in	$11 / 4$ in	-	1DBE3
\#3	60°	$1 / 4$ in	7/64 in	2 in	3P283	1DBE7
\#3	60°	$1 / 4$ in	7/64 in	3 in	1DBL4	-
\#3	60°	$1 / 4$ in	7/64 in	4 in	1DBL5	-
\#3	60°	$1 / 4$ in	7/64 in	5 in	1DBL6	-
\#3	60°	$1 / 4$ in	7/64 in	6 in	1DBL7	-
\#3	82°	$1 / 4$ in	7/64 in	2 in	2RTW5	-
\#3	90°	$1 / 4 \mathrm{in}$	7/64 in	2 in	1DBH4	2RTX9
\#4	60°	$5 / 16$ in	$1 / 8$ in	$21 / 8$ in	3P285	1DBE8
\#4	60°	$5 / 16$ in	$1 / 8$ in	3 in	1DBL8	-
\#4	60°	$5 / 16$ in	$1 / 8$ in	4 in	1DBL9	-
\#4	60°	$5 / 16$ in	$1 / 8$ in	5 in	1DBN1	-
\#4	60°	$5 / 16$ in	$1 / 8$ in	6 in	1DBN2	-
\#4	82°	5/16 in	$1 / 8$ in	$21 / 8$ in	2RTW6	4FVX5
\#4	90°	$5 / 16$ in	$1 / 8$ in	$21 / 8$ in	1DBH5	2RTY1

tance in a wide range of machining applications.
Cobalt Steel—Provides good wear resistance when machining hard materials at high speeds and is harder than high-speed steel.

Powdered Metal—Stronger than high-speed steel and cobalt steel.
Solid Carbide-Provides excellent wear resistance when machining the toughest materials, such as stainless steel.

5-Pc. Set,
Plain Tip,
Right Hand, Double End 1DBT6

